
On Gauss's Class Number Problems 

By Daniel Shanks 

Abstract. Let h be the class number of binary quadratic forms (in Gauss's 
formulation). All negative determinants having some h = 6n i: 1 can be deter- 
mined constructively: for h = 5 there are four such determinants; for h = 7, six; 
for h = 11, four; and for h = 13, six. The distinction between class numbers for 
determinants and for discriminants is discussed and some data are given. The 
question of one class/genus for negative determinants is imbedded in the larger 
question of the existence of a determinant having a specific Abelian group as its 
composition group. All Abelian groups of order <25 so exist, but the noncyclic 
groups of order 25, 49, and 121 do not occur. Positive determinants are treated by 
the same composition method. Although most positive primes of the form n2 - 8 
have h = 1, an interesting subset does not. A positive determinant of an odd 
exponent of irregularity also appears in the investigation. Gauss indicated that he 
could not find one. U 

1. Introduction. Recently, Stark showed that A = 163 is the largest integer for 
which the algebraic field R( A-A) has class number 1. This is equivalent to the 
statement that binary quadratic forms 

Au2 + Buv + Gv2 

with 

A = 4AC-B2 

will have more than one class if A > 163. Here - A is the discriminant. 
Gauss's formulation of the same (then unproved) result is different, but equiva- 

lent. He writes 

Au2 + 2Buv + CV2 -D = AC-B2 

with D the determinant. A determinant -163 means a discriminant -652, and it 
is known that if 

A=8k + 3, (k > O), 

and its class number is h(- A), then h(-4 A) = 3h(- A). So for Gauss the propo- 
sition reads: For class number 3, -D is not greater than 163. Here is part of Gauss's 
table [1] for classifications with one genus: 

-D 
I.1 1, 2, 3, 4, 7 
1.3 11, 19, 23, 27, 31, 43, 67, 163 
I.5 47, 79, 103, 127 
I.7 71, 151, 223, 343, 463, 487. 

He writes .... the series of determinants- corresponding to the same classifica- 
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tion ... always seem to terminate ** . Since the table from which we drew these 
examples has been extended far beyond the largest determinants that occur here, 
and since it furnishes no others belonging to these classifications, there seems to be 
no doubt that the preceding series do in fact terminate, . However, rigorous 
proofs ... seem to be very difficult." Aside from these empirics, however, Gauss 
seems to offer no proof, difficult or otherwise, and for I.3 (one genus containing 
three classes) it seems unlikely that he had a proof. 

What we first wish to show here is that for class number h = 6n -+ 1 the series 
do in fact terminate, and all corresponding determinants (this is Gauss's formula- 
tion) can be obtained constructively. In particular, the lists shown as I.5 and I.7 
are complete for h = 5, 7. Likewise, his subsequent statement: "there are * four 
(the largest - 1303) which correspond to I.11 " is also correct. 

In later sections, we examine other questions of Gauss including those involving 
positive determinants and one class per genus. Specifically, we show that for nega- 
tive determinants the noncyclic group of order 25, 49, or 121 cannot occur as a 
composition group; that although most prime determinants (or discriminants) = 

n2- 8 appear to have class number 1, there is an interesting subclass that does not; 
and, finally, there exists a positive irregular determinant with an odd "exponent of 
irregularity". 

2. The Method and the Proof. If -D = 1, 2, or 4 the class number is 1. If 
-D = 4k + 1, 4k + 2, 4k + 4, (k > 0), the class number is even, since there then 
exists an ambiguous form F = (A, 2B, C) distinct from the principal form I, namely: 

F = (2,2,2k+ 1) for -D = 4k+ 1, 

F=(28, , 2k + 1) for -D = 28(2k + 1), 

F = (4, 4, 2.-2 + 1) for -D = 28 (s > 2). 

Since F2 = I = (1, 0, -D) under composition, there is a subgroup of order 2. 
If -D = 3 the class number is 1. If -D = 8k + 3, (k > 0), the class number 

is divisible by 3 since 

F = (4, 2, 2k + 1) satisfies F3 = I, 

and now there is a subgroup of order 3. 
Thus, for h = 6n I 1 (n > 0), we must have 

-D = 8k - . 

But for discriminants- A with 

A = 8k - 1 

it is known that 

h(- A) = h(-4 A) 

without the factor of 3 which occurs when A = 8k + 3. Thus we consider negative 
discriminants A = 8k - 1 with class number h(l - 8k) = 6n + 1. One quadratic 
form then is 

F = (2, 1, k) 
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and by composition its hth power is the principal form 

Fh = (1, 1, 2k). 

Since F represents 2, we therefore have 

2h = U2 + UV + 2kv2 

or 

2 h+2 = (2u + v) 2 + AV2 

Here, v # 0, since h is odd, so the only possible A are those given by 

(1) /vA2h+ 
_ (2u + v)2 

2 
v 

which are finite in number. If h is a prime > 3 we also have (2u + v) and v odd, since 
the group is cyclic with F as a primitive root, and if v were even there would be a 
representation of a smaller odd power of 2. 

For example, if h = 5, we have 

127 =128-1, 119 = 128-9, 103 = 128-25, 
79 = 128 - 49, 47 = 128 - 81. 

Of these, 119 = 7 .17 has class number 10, and the remaining four comprise Gauss's 
(complete) list. 

By construction, any h dividing 5, with A = 8k - 1, must also appear here, and 
our last candidate 7 = 128 - 121 is therefore the only remaining h = 1. Thus 
Gauss's row I.1 is simultaneously shown to be complete. 

Similarly, from 

-DV2 = 8192- (2u + v)2, 

we find the four cases of class number 11: -D = 167, 271, 967, and 1303. The 
remaining values of -D here have class numbers from 22 to 121 that are divisible 
by 11 with the sole exception that 8192 - 672 = 3703 = 7.232 can be interpreted 
either as -D = 3703, v = 1, with h = 22, or as -D = 7, v = 23, with h = 1 as 
before. 

3. A Distinction and Some Data. Now, we must emphasize the following: this is 
Gauss's problem, and -D = 127 is the greatest negative determinant with class 
number 5. That does not mean that in algebraic fields R( -,,- A) with class number 
5, A = 127 is the greatest. In fact, R( -%/ - 2683) also has class number 5, (perhaps 
it is the greatest). But since 2683 = 8 .335 + 3, the determinant -2683 does not 
have class number 5, but rather 15. 

We also note that Stark's result only includes the 8k + 3 values in Gauss's row 
I.3. To show completeness there we compute all 8k - 1 values 

31 = 32 - 1, 23 = 32 - 9, (7 = 32 - 25), 

as before. 
A corollary of interest is this: Let 

-D = 8k -1 . 



154 DANIEL SHANKS 

Then its class number h, regardless as to whether or not it is of the form 6n 4+ 1, 
must satisfy 

h > 1 +log2 k 

where log2 here means "log to the base 2." Thus -D = 1423 and 1087 must have 
h > 9, and since, as before, they arise from 

1423 = 211-252, 1087 =211 312, 

they do have h = 9. The remaining three -D = 8k - 1 with h = 9 are 

823 = 211-352, 367 = 21 -412, 199 = 211 - 432. 

(Since none of these five -D appeared previously with h = 3, we may even add 
that their groups are cyclic, that is, these determinants are not "irregular".) 

The fifteen known -D = 8k + 3 in I.9 are 59, 83, 107, 139, 211, 243, 283, 307, 
331, 379, 499, 547, 643, 883, and 907, but they are not given by our theory. If Gauss 
is correct that there are only 20 determinants in I.9, that would imply that 
R( -VI -907) is the last field with class number 3. But that is unproven. 

The fields with A = 1423, 1087, 823, 367, and 199, as implied, all have a cyclic 
group of order 9. While there are many A = 8k + 3 with the same property, we 
know of only one square-free A, namely, A = 4027, where the noncyclic group of 
order 9 appears. It may be unique. More generally, the last A for fields R( 1- A) 
with h < 10 appears to be that listed in 

TABLE 1 

h A h A h A 

2 427 3 907 4 noncyclic 1435 
4 cyclic 1555 5 2683 6 3763 
7 5923 8, 8 genera 3315 8 cyclic 5947 
8, 4 genera 6307 9 noncyclic 4027 9 cyclic 10627 

None of this is proven. 

4. Class Number 13 and Some Techniques. We wish to indicate briefly how the 
application of further theory can greatly reduce the computations needed to settle 
the completeness for some h = 6n +i 1. Consider h = 13, a case not discussed by 
Gauss. Here 

vs2 = 32768 - (2u + v)2, 

and the computation threatens to become lengthy. But if A is not a prime (or an 
odd power of a prime) its class number is even, as before, so we only need to test 
those A that are prime powers. 

Aside from v = 1, any other possible v must have 2 as a quadratic residue for 
every prime divisor of v. But v = 17 requires 

2u + v _i+20 (mod 172) 

and therefore yields only negative A. And v > 17 similarly yields negative A, or, 
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at best, positive A that are clearly too small. Thus, if v # 1, we must have v = 7 and 

2u + v -6 (mod 72) . 

This gives 

u A u A 

18 631 24 607 
67 263 73 191. 

These four A are prime and have h = 13. (For A = 191, this was highly probable 
a priori since it was unlikely that such a small A could have h ? 26.) 

The remaining candidates are 

A = 32768 - (2u + 1)2, 

but most of these can be quickly eliminated. Consider the first 71% of the entire 
range: 

b =2u + 1 < 128 = 27, A > 16384 = 214. 

Any such A has at least 13 quadratic forms, namely, the principal form: 

(1, 1, '(A + 1)), 

and the 12 distinct forms: 

(2, z? b, 212) , (22, ? b, 211) (23, ? b, 210) 

(24, 4 b, 29), (25, ? b, 28), (26, b, 27) 

It may be seen that for such A the left coefficient here, A = 2n, n = 1 to 6, remains 
unchanged when the form is reduced. But, if h = 13, we cannot tolerate even one 
more reduced form. Now consider the odd primes p < 64, and if 

(-A/p) = +1, 

there will be reduced forms (p, z?B, C) distinct from the foregoing. If b- 0 (mod 3), 
there are the forms (3, ?E1, C); if b -2 (mod 5), there are the forms (5, Z?1, C); 
etc., and this is so whether A is prime or not. In this way we may sieve out this 
entire range without actually computing the class numbers, but nonetheless having 
knowledge that they are multiples of 13 that exceed 13. 

As A falls below 214 we must be a bit more careful, but similar techniques are 
applicable, and we thereby determine, without undue computation, that there are 
exactly six negative determinants with h = 13: 

-D = 191, 263, 607, 631, 727, 2143. 

Again, we have the ubiquitous h = 1: 

-D = 7 = 2'5-1812. 

5. The First Missing Group and Others. Gauss also expressed the opinion that 
for any negative determinant [1, p. 362] with 32 or more genera there are at least 
two classes per genus. This would follow if it could be proven, as was also conjec- 
tured, that there are exactly 65 idoneal numbers-that is, that the list of these by 
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Euler and Gauss is complete. In turn, it implies that the composition group of 
order 32 which is a direct product of five groups of order 2 does not occur. This 
remains unproven although it is now known, cf. [2], that there are only a finite 
number of negative determinants with one class per genus. 

We may put the question in a more general form and ask: Which Abelian groups 
do occur as composition groups for negative determinants? There are 37 distinct 
Abelian groups of order <24. For each of these there is at least one square-free 
negative determinant that has this group as its composition group. For example, 
-D = 307 (Gauss's irregular determinant) has the noncyclic group of order 9, and 
-D = 146, 161, 285, 1365, and 1513 have the five distinct groups of order 16. For 
class number 25, we have - D = 479, 599, 1367, * * * but each of these has the cyclic 
group. For some time, the author believed that the noncyclic group of order 25 did 
not occur, but he lacked a proof. 

In principle, we can now complete this series and test them all. But the proof is 
much simpler. Each form except the principal form is of order 5 in the noncyclic 
group. As before, then, from 

-D = 8k-1, F = (2, 1, k) 

we have 

27 = (2u + v)2 + (8k -1)v2 

and the series -D = 479, etc. are clearly all too large to represent 27 = 128. 
Similarly, -D = 1511, 2111, etc. have class number 49 and are clearly too 

large to have the noncyclic group. 
But for class number 121, we need an additional calculation. In our examination 

of h = 1 above, we found one, and only one, 

A = 8111 = 21- 92 

with class number 121. But while the form F = (2, 1, 1014) does have order 11 
here, this is merely necessary, not sufficient. A second form 

G = (3, 1, 676) 

satisfies 

GI' = (16, -9, 128) = F7 

and therefore generates a cyclic group of order 121. 
Thus, we conclude that the noncyclic groups of order 52, 72, and 112 do not occur 

for negative determinants. 
This leaves it open, to our knowledge, whether there is a field with negative 

discriminant A = 8k + 3 that has any of these groups. We can only state that the 
noncyclic 25 does not occur for A < 10,000. (See Note added in proof below.) 

6. Positive Determinants and Discriminants. For positive determinants, on the 
contrary, Gauss [3, p. 353] indicated that most of these appeared to have one class 
per genus, and he raised the question whether the fractions that do may not tend to 
some fixed limit as the value of the determinant goes to infinity. This is also un- 
settled. 
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Let us first confine ourselves to one genus and set the determinant D, or the 
discriminant d, to be a prime (or an odd power of a prime) of the form 

d = 8s+ 1, D = 8s+ 1. 

Further, in (1), let us specifically examine the cases h = 1, 3, 5, 7, and, for simplicity, 
v = 1. For orientation, we list in Table 2 all positive or negative prime-power 
discriminants of the forms n2 - 8, n2 - 32, n2 - 128, and n2 - 512 that do not 
exceed 10,000 together with their class numbers. (As before these class numbers are 
the same for the discriminant and the determinant.) 

TABLE 2 
Prime-Powers of Form n2 - 22k+1 and h(n2 - 22k+1) 

n2-8 h n2--32 h n2-128 h n2--512 h 

-7 1 -31 3 -127 5 -503 21 
17 1 -23 3 -103 5 -487 7 
41 1 -7 1 -79 5 -463 7 
73 1 17 1 -47 5 -431 21 

113 1 89 1 -7 1 -73 7 
281 1 137 1 41 1 -223 7 
353 1 193 1 97 1 -151 7 
433 1 257 3 233 1 -71 7 
521 1 409 1 313 1 17 1 
617 1 593 1 401 5 113 1 
953 1 809 1 601 1 449 1 

1217 1 929 1 1097 1 577 7 
1361 1 1193 1 1553 1 857 1 
2017 1 1489 3 2081 5 1009 7 
2393 1 1993 1 2273 1 1697 1 
2593 1 2777 3 2473 1 1889 1 
2801 1 3217 1 2897 1 2089 3 
4217 1 3449 1 3121 5 2297 1 
4481 3 4457 1 3593 1 2969 1 
6553 1 4729 3 173 1 3209 1 
7561 1 5009 1 5801 1 3457 1 
8273 1 5297 3 6113 5 4817 1 
8641 1 5897 1 6761 1 5113 1 

6529 1 7793 1 5417 7 
6857 1 8521 1 7057 21 
7193 1 9281 3 8513 1 
7537 3 9689 1 
9377 1 
9769 1 

The negative discriminants here have been discussed previously, but are in- 
cluded for comparison. The most notable distinction is that the same 

d = (2u + 1)2 - 22k+i 

which can have only finitely many negative values yields infinitely many positive 
candidates-it being the nature of a parabola to be open only at one end. 

Consider the first column of Table 2. If d = 8s + 1, one has the form 
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F = (2, 1, -s), 

and if we are to have class number 1 this form must be equivalent to the principal 
form, which may be written (1, 1, -2s). If d is a prime of the form n2 - 8 this 
condition is surely met, and we may factor 2 by 

2=(2-n + I-+ d)(2n -2 d) 

in the algebraic field. 
What is impressive in this first column is the "extent" to which this necessary 

condition is sufficient. There is only one counterexample less than 10,000, namely, 
the listed 4481. Here we have class number 3 even though F is equivalent to the 
principal form. 

Similarly, in the remaining columns, n2 - 32, n2 - 128, n2 - 512, we force F3, 
F5, or F7, respectively, to be equivalent to the principal form. This allows F itself 
to be equivalent. While we therefore find a goodly number of class number 3, 5, or 
7 here, (or the multiple of 7 for d = 7057), we also find many of class number 1. 

What catches the eye are curious cases d = 9281, 2089, which like 4481 have 
(2, 1, -s) -- (1, 1, -2s) and still do not have class number 1, but rather 3. Let d 
be any prime of the form 8s + 1-without insisting on any special form such as 
n2 - 8. One finds that of the 295 primes 8s + 1 < 10,000, 252 have (2, 1, -s) 
(1, 1, -2s), and, of these, 248 have class number 1. The four exceptions are 8713 
and the previously mentioned 4481, 9281, and 2089. 

It might seem, therefore, that while (2, 1, - s) -- (1, 1, -2s) is not a sufficient 
condition for class number 1, the exceptions are rather rare. If this could be quanti- 
fied, and if it could be shown that there are infinitely many primes of the form 
n2 - 8, as seems very likely by the Hardy-Littlewood conjecture, cf. [4], then one 
would have infinitely many square-free discriminants with class number 1. This 
remains unproven. 

7. A Class of Counterexamples and Others. Returning to 4481, we wish to 
analyze its peculiarity so as to locate any others of its ilk. Its principal form has the 
following period of reduced forms: 

(1, 65, -64), (-64, 63, 2) (2, 65, -32), (-32, 63, 4), 

(4, 65, -16), (-16, 63, 8), (8, 65, -8) , (-8, 63, 16), etc. 

It is clear, by induction, that the center coefficients are alternatingly 64 =+ 1, and 
the end coefficients are powers of 2 or their negatives. But, by Lagrange's Theorem, 
cf. [5], any number <' 2 i 4481 which is represented by the principal form must occur 
as one of these end coefficients. Therefore, if there is even one odd prime p < 2 i 4481 
which has 4481 as a quadratic residue, its corresponding form must be inequivalent 
to the principal form, i.e., the class number exceeds 1. And, for 4481, one has no 
lack of such: 

(5, 61, -38) , (7, 55, -52) , (11, 57, -28), etc. 

(Note, this argument is quite similar to that used in Section 4, even though the 
reduced classes there, (2, =+b, 212), etc. were inequivalent.) 

We therefore generalize 4481 as follows: Let 

Sn = (2n + 3)2 - 8 
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and seek primes of this form. Then S6 is our 4481, and one may see that the reduced 
forms for the general Sn have a similar characterization. If one now has a residue: 

(2) P < 12 -% Sn (Sn| p) = +1 I 

one therefore has a prime of the form m2 - 8 with a class number greater than 1. 
For Si = 17, S2 = 41, S3 = 113, S4 = 353, S5 = 1217, there are no such primes p, 
and we have class number 1, as in Table 2. 

But as Sn oc, condition (2) becomes more and more difficult to avoid and 
one expects the class number to increase without bound. One finds that S7, Sg, and 
S13 are composite and may be discarded. But 

S8 = 67073 has h = 3, 

S10 = 1054721 has h = 9, 

S11 = 4206593 hash = 11, 

S12 = 16801793 has h = 27. 

That, in general, Sn will have numerous primes p satisfying (2) as n oo seems clear, 
since p = 5 is valid for every n = 4k + 2; p = 7 for every n = 3k; 11 for every 
n = 10k + 3, 4, 6, 7; etc. On the other hand, one expects, heuristically, that the 
number of prime Sn should go to infinity as 0 (log n). 

As an aside, we wish to indicate that the determination of, e.g., h(16801793) = 27 
would be very tedious by the classical method of listing all of its reduced forms, inas- 
much as it has so many. Here, we set G = (7, 4089, -2924) and by composition 
we find its smallest power, 27, that gives the principal form. Then, h is an odd 
multiple of 27, since the discriminant is prime. Therefore, h = 27, or at least 81, 
and the latter may be excluded by consideration of the Pell solution and the rela- 
tionship 

log (T +UV )h _ u) h d 
2V\d p>2 P P 

Our point is that the idea of composition, used extensively above, is useful not only 
theoretically, but also computationally. 

If these Sn were the only primes n2 - 8 with h > 1 we could conclude, heuristi- 
cally, that "almost all" primes n2 - 8 had h = 1, and therefore Gauss's idea of a 
fixed limiting ratio < 1 would be inapplicable to this subset of positive determinants. 
However, there are other counterexamples. The examples d = 8713, 9281, and 2089 
mentioned above have periods for their principal forms of a much more intricate 
character than those for the Sn, and, a priori, there is no reason why similar examples 
cannot occur for n2 - 8. 

Recently, Dr. Morris Newman made available to us Kloss's table [6] of class 
numbers for prime discriminants 4m + 1 less than 100,000. We may therefore easily 
extend our Table 2. In that table there are 22 primes n2 - 8 < 10,000, of which 21 
have h = 1. In the continuation there are 44 more primes n2 - 8 < 100,000, of 
which 38 have h = 1. Besides our previously found S8 with h = 3, there are five 
other counterexamples all of which have a more intricate and less analyzable 
character: p = 15121, h = 5; p = 31321, h = 7; p = 45361, h = 3; p = 75617, 
h = 3; and p = 91801, h = 3. The fraction of primes n2 - 8 with h > 1 therefore 
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increases beyond its very low value when p < 10,000 and it is not improbable that 
Gauss's fixed limit idea is applicable here also.* 

8. Some Clarifying Remarks. It may be useful for some readers to make the 
following clarifications. Another distinction between positive and negative determi- 
nants is that our deductions concerning factors of 3 and 2 at the beginning of Section 
2 also break down, in part, for D > 0. Consider the factor of 3, with 

D=8s-3, F=(4,2,1-2s). 

For -D = 8k + 3 we obtained a factor of 3 except for k = 0 since 

F= (4,2,22k+1) 

was then inequivalent to I and F3 = I. For k = 0, F is equivalent to I, and D = -3 
is a solitary exception. But for positive D = 8s - 3 there is no a priori reason for F 
to be inequivalent, and we often find that it is equivalent. For these positive determi- 
nants, then, we do not have h(4D) = 3h(D), but rather h(4D) = h(D). It follows 
that one has many determinants p = 8s - 3 where the class number is not a multiple 
of 3 and our previous completeness argument is lost. For example, 

h(4 i5) = h(4.13) = h(4.29) = 1, h(4-1093) = 5. 

On the other hand, if F is inequivalent to I, as for d = 37, 101, - * *, 1901, etc., 
then one has 

h(37) = 1, h(4 -37) = 3 

h(101) = 1, h(4 101) = 3 

h(1901) = 3, h(4.1901) = 9, 

as before. 
Similarly, the factor of 2 in Section 2 may be lost for real fields R( W d). We omit 

the details, but suggest that a reader who wishes to study this further work through 
the following examples. 

The real field R( -V d) has class number 2 for d = 85, 205, 485, and 1405. But the 
corresponding quadratic forms for these positive determinants have class number 
2, 4, 6, and 12, respectively. Thus, the factors of 2 and 3 mentioned above may occur 
or be lost independently of each other. 

9. A Sought for Irregular Determinant. A final problem of Gauss that we wish 
to discuss is this. He wrote [1, p. 369-370] ". . . there seems to be no doubt that 
there are [positive determinants] whose exponent of irregularity is odd, although 
we confess that none has come to our attention thus far." H. J. Smith, in his Report 
[7, p. 258], repeats this almost in the same words, and Dickson's History [8] offers 
no example discovered in the next century. 

The simplest example would be a noncyclic class number 9, since here there is 
then only one genus, and it is irregular of exponent 3. For the negative determinant, 
D = -307, and discriminant, d = -4027, we mentioned such examples above. 

* For further discussion of Gauss's conjecture, see a long analytical review of Kloss's table on 
page 213 of this issue of Mathematics of Computation. 
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Does this group exist for positive determinants? 
There is at least one example. If we extend the column n2 - 32 of Table 2 we 

find 32009 = 1792 - 32 with h(32009) = 9. By construction, we have "encouraged" 
its form that represents 2 to be of third order. Since 32009 = 56 + 4.46 we have one 
reduced form 

43u2 + 53uv - 43v2 

that represents both 53 and 43 explicitly, and, of necessity, it lies in the principal 
form inasmuch as it gives the unique decomposition of 32009 as a sum of two 
squares. Since the noncyclic group of order 9 has every element, except the identity, 
of order 3, the example looks suspiciously like that sought. Upon examination one 
finds 

F = (2, 177, -85), F2 = (4, 173, -130), F3 = I = (1, 177, -170), 

G = (5, 177, -34), G2 = (25, 147, -104), G3 = I = (1, 177, -170), 

and since F, G, and I are all inequivalent we have a composition group which is a 
direct product of two groups of order 3. Thus, the determinant 32009, the discrimi- 
nant 32009, and the real field R (32009) all have the noncyclic group of order 
9. There is no assertion that this is the smallest such D, but merely the first that 
we found. (See Note added in proof.) We similarly sought the noncyclic 25 group 
for a positive determinant but did not find it. Unlike the result in Section 5, we see 
no a priori reason for its nonexistence when the determinant is positive. 

Note added in proof. Subsequently we learned that Gordon Pall [9] had already 
found a positive discriminant, d = 62501, with a noncyclic class number 9. (This is 
just the opposite of the possibility we envisaged above: it is not smaller and found 
later, but, rather, larger and found earlier.) A technical comparison of 32009 and 
62501 is of some interest at two points. 

Since 62501 5 8k + 1 it could not appear in any extension of Table 2 as 32009 
does, and must be discovered in some other way. The real connection between the 
two examples lies in their similar decompositions: 

32009 = 56 + 4.46, 62501 = 16 + 4.56, 

and the generalization to other potential candidates for noncyclic groups of order 
p2 iS obvious: 

P = m2p + 4.n2p 

Also, since 62501 0 8k + 1, when 62501 is regarded as a determinant, as Pall 
also does, its class number is 27, not 9. Is its group C(3) X C(3) X C(3) or is it 
C(3) X C(9), where C(n) is cyclic of order n? Pall does not say, but it is C(3) X C(9). 
From Gauss's viewpoint, D = 62501 would therefore be distinctly more complex 
than 32009, (aside from being a little larger). 

Pall also states there that d = - 12379 has the noncyclic group of order 25. At 
the end of Section 5 above we searched for such a discriminant and stated that there 
were none with -d < 10,000. Thus, Pall's - 12379 would be very welcome (es- 
pecially as 12379 > 10,000) if it really were noncyclic. Unfortunately, it is not. If 
F = (7, 5, 443) one has 
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F2 = (49, 19, 65), F3 = (19, -3, 163), 

F4 = (35, 9, 89), F5 = (5, -1, 619) = G, 

G= (25, -11,125), G3 = (25, 11, 125) = G-2. 

Therefore, 

G5 = F25 = I = (1, 1, 3095), 

and F generates a cyclic group of order 25. From F3 # F-2 one knows already that 
one does not have the noncyclic 25. 

Later, at our suggestion, Edward Ordman kindly computed [10] h(-p) for all 
primes p = 8m + 3 < 105. There are 89 such primes from p = 3851 to p = 93307 
with h(-p) = 25, and from unpublished work of the Lehmers, computed for quite 
a different purpose, it is highly probable that p = 93307 is the last negative discrimi- 
nant with h = 25. 

We find that two and only two of these, p = 12451 and 37363, have the non- 
cyclic group. In the first, 

F?1 = (5, 4:3, 623), F-2 = (25, zF7, 125) 

and 

G?1 = (7, 4?3, 445), G?2 = (49, -t17, 65) 

are of order 5, and the whole group is the product of these two cycles. For the 
second, 

F -1 = (11, 4:9, 851), Fi2 = (83, TF53, 121) 

and 

G+1 = (13, Ai5, 719), Gi2 = (89, TF27, 107) 

have the same property. 
Most of the other 87 primes are quickly seen to have the cyclic group. There are 

13, from 3851 to 21323, of the form 3k - 1. They therefore have a form (3, B, C), 
and since they all exceed 972 = 4.35 this form must be of order 25. This is the same 
argument as that used in Section 5 with 2 replaced by 3. There are 18, from 12979 
to 34939, that exceed 12500 = 4.55 and are of the form 10k :1 1. Their forms 
(5, B, C) are therefore of order 25. While there are none with (-p17) = 1 that 
exceed 4.75, there are 12 with (-p 17) = 1, from 20347 to 39163, for which one sees 
at once that 67228 - p 0 u2. These are clearly cyclic. Most of the remaining primes 
are found to have the cyclic group by finding a form F with F3 0 F-2. For example, 
for 93307, 

F = (23,-21, 109), F2 = (1012 57, 239), F3 = (41, 3, 569) . 
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